Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
2.
Sci Rep ; 14(1): 6421, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494529

RESUMO

The use of natural fibers in cementitious composites has been gaining prominence in engineering. The natural lignocellulosic fibers (NLFs) used in these composites have advantages such as reduced density, reduced fragmentation and concrete cracking, thus improving flexural performance and durability. Coconut-fiber is one of those natural fibers and its use presents technical, ecological, social and economic benefits, as it is improperly disposed of, representing a large waste of natural resources, in addition to causing environmental pollution.. Thus, composites reinforced with natural fibers are promising materials for the construction industry, as in addition to meeting the sustainability of buildings, there will also be a reduction in urban solid waste generated and gains for structures with the use of environmentally friendly materials that meet to active efforts and with greater durability. This work aims to evaluate the tensile behavior of green coconut-fibers subjected to different drying temperatures through chemical, thermal (TG/DSC), morphological, visual and mechanical analysis. Drying temperatures of 70 °C, 100 °C and 130 °C were analyzed and the results indicated that the drying temperature at 70 °C was satisfactory, providing fiber-reinforced composites with good tensile strength, combined with good ductility.

3.
Death Stud ; 48(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36749791

RESUMO

This qualitative exploratory study aimed to describe the experiences and practices of care facility directors regarding residents dying in Portuguese residential care facilities (RCFs) before and during the COVID-19 pandemic. Data was obtained from 17 care director facilities who participated in focus groups. The data analysis followed the interpretative phenomenological approach. Participants stated that practices surrounding the death of the residents in Portuguese RCFs changed significantly from before to during the pandemic, regarding both those who died from COVID-19 infection and from other conditions. Four themes emerged that illustrated the situation during the peaks of the pandemic. During the pandemic, practices and experiences quite different from the usual ones have emerged. These results support the importance of a good death, and dying with dignity in RCFs, and the need for policies, practices, and training on the death of residents in RCFs in Portugal.


Assuntos
COVID-19 , Humanos , Pandemias , Portugal , Pesquisa Qualitativa , Grupos Focais
4.
Materials (Basel) ; 16(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37959467

RESUMO

The influence of parameters involved in the pulsed electric arc, used as an energy source in the tungsten inert gas (TIG)-mediated welding of Duplex UNS S31803 stainless steel, to attend the manufacture of flexible pipes for the extraction of oil and gas is presented. A fundamental part in the manufacturing process of flexible pipelines is the welding of these strips so that corresponding TIG welds will be subjected to the same process and work conditions. Therefore, it is necessary to maintain the same properties in the welded regions. Covering the effects of each parameter of the pulsed electric arc such as peak and base current as welds, cyclic ratio, and pulsation frequency is a desirable endeavor. The final objective is the mitigation of problems that have a great impact on production, such as weld breakage during the conformation of the strip in the process and test failures. With this, tensile, bending, and ferrite percentage tests were performed on 12 samples that qualified as satisfactory in the visual aspect. A minimum tensile strength of 734.57 MPa and a maximum of 775.77 MPa were obtained where all values found are above the tensile strength limit of the base material of 620 MPa. With the completion of the study, it is possible to understand not only the response of the process to each parameter but also the tendency when changing them. Moreover, it is possible to explore the possibility of guiding the changes to achieve results about the visual aspect and the mechanical properties of the welded material.

6.
Cell Mol Immunol ; 20(8): 955-968, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37344746

RESUMO

T-cell development ensures the formation of diverse repertoires of T-cell receptors (TCRs) that recognize a variety of antigens. Glycosylation is a major posttranslational modification present in virtually all cells, including T-lymphocytes, that regulates activity/functions. Although these structures are known to be involved in TCR-selection in DP thymocytes, it is unclear how glycans regulate other thymic development processes and how they influence susceptibility to disease. Here, we discovered stage-specific glycome compositions during T-cell development in human and murine thymocytes, as well as dynamic alterations. After restricting the N-glycosylation profile of thymocytes to high-mannose structures, using specific glycoengineered mice (Rag1CreMgat1fl/fl), we showed remarkable defects in key developmental checkpoints, including ß-selection, regulatory T-cell generation and γδT-cell development, associated with increased susceptibility to colon and kidney inflammation and infection. We further demonstrated that a single N-glycan antenna (modeled in Rag1CreMgat2fl/fl mice) is the sine-qua-non condition to ensure normal development. In conclusion, we revealed that mannosylated thymocytes lead to a dysregulation in T-cell development that is associated with inflammation susceptibility.


Assuntos
Timócitos , Timo , Camundongos , Animais , Humanos , Glicosilação , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas de Homeodomínio/genética , Polissacarídeos
7.
J Fungi (Basel) ; 9(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37367571

RESUMO

The gold standard for diagnosing invasive candidiasis still relies on blood cultures, which are inefficient and time-consuming to analyze. We developed an in-house qPCR assay to identify the 5 major Candida species in 78 peripheral blood (PB) samples from ICU patients at risk of candidemia. Blood cultures and (1,3)-ß-D-glucan (BDG) testing were performed concurrently to evaluate the performance of the qPCR. The qPCR was positive for DNA samples from all 20 patients with proven candidemia (positive PB cultures), showing complete concordance with Candida species identification in blood cultures, except for detection of dual candidemia in 4 patients, which was missed by blood cultures. Additionally, the qPCR detected Candida species in six DNA samples from patients with positive central venous catheters blood (CB) but negative PB cultures. BDG values were similarly high in these six samples and the ones with proven candidemia, strongly suggesting the diagnosis of a true candidemia episode despite the negative PB cultures. Samples from patients neither infected nor colonized yielded negative results in both the qPCR and BDG testing. Our qPCR assay was at least as sensitive as blood cultures, but with a shorter turnaround time. Furthermore, negative results from the qPCR provided strong evidence for the absence of candidemia caused by the five major Candida species.

8.
Materials (Basel) ; 16(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241432

RESUMO

This paper aimed to analyze the reduction in the ballast layer permeability simulated in a laboratory in saturated conditions by the presence of rock dust as a contaminant of three types of rocks explored in different deposits in the northern region of the state of Rio de Janeiro, Brazil, through laboratory testing relating the physical properties of rock particles before and after sodium sulfate attack. Sodium sulfate attack is justified by the proximity of some sections of the planned EF-118 Vitória-Rio railway line to the coast and of the sulfated water table to the ballast bed, which could degrade the material used and compromise the railway track. Granulometry and permeability tests were performed to compare ballast samples with fouling rates of 0, 10, 20, and 40% rock dust by volume. A constant head permeameter was used to analyze hydraulic conductivity and establish correlations between the petrography and mercury intrusion porosimetry of the rocks, namely two types of metagranite (Mg1 and Mg3) and a gneisse (Gn2). Rocks, such as Mg1 and Mg3, with a larger composition of minerals susceptible to weathering according to petrography analyses, tend to be more sensitive to weathering tests. This, in conjunction with the climate in the region studied, with average annual temperature and rainfall of 27 °C and 1200 mm, could compromise track safety and user comfort. Additionally, the Mg1 and Mg3 samples showed greater percentage variation in wear after the Micro-Deval test, which could damage the ballast due to the considerable changeability of the material. The mass loss caused by abrasion due to the passage of rail vehicles was assessed by the Micro-Deval test, with Mg3 (intact rock) declining from 8.50 ± 1.5 to 11.04 ± 0.5% after chemical attack. However, Gn2, which exhibited the greatest mass loss among the samples, showed no significant variation in average wear, and its mineralogical characteristics remained almost unchanged after 60 sodium sulfate cycles. These aspects, combined with its satisfactory hydraulic conductivity rate, indicate that Gn2 is suitable for use as railway ballast in the EF-118 railway line.

9.
Materials (Basel) ; 16(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676581

RESUMO

Obtained natural sands can present different particle size distributions (PSD), although they have the same mineralogical origin. These differences directly influence the physical and mechanical behavior of mortars and, therefore, the performance of mortar and ceramic renderings. Standardizing the particle size of sands based on pre-established requirements in normative standards (NBR 7214 or ASTM C778) is one way to minimize these effects. However, these standards do not consider the optimization of the granular skeleton through the analysis of bulk density and PSD, which may be insufficient to obtain satisfactory results. Therefore, this paper analyzes the effects of using different particle size ranges on the physical and mechanical behavior of cement and hydrated lime mortars. The properties of consistency index, bulk density, air content, capillary water absorption, water absorption by immersion, flexural strength, compressive strength, and dynamic modulus of elasticity were evaluated. For this purpose, standardized sands of the same mineralogical origin were made with different particle size ranges, being: (i) standardized sand constituted by 25% of coarse and fine fractions (S25-control), (ii) standardized sand constituted by 30% of coarse fraction and 20% of fine fraction (S30-20), and (iii) standardized sand composed by 40% of coarse fraction, and 10% of fine fraction (S40-10), respectively. The results indicated that variations in the particle size composition of the standardized sands are necessary to obtain mixtures with higher compactness and, therefore, mortars with better physical and mechanical performance. Thus, the dosage of the particle size fractions of standardized sand should consider the optimization of the granular skeleton, being the unit mass and the granulometric composition as important parameters to meet this premise.

10.
Materials (Basel) ; 15(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36079400

RESUMO

Due to renovation and fighting in the world, a huge accumulation of construction and demolition waste is formed. These materials are effectively used as aggregates, but there is very little information about the use of scrap concrete to create cementless binders. The purpose of the work is to be a comprehensive study of the composition and properties of concrete wastes of various fractions with the aim of their rational use as cementless binders. The scientific novelty lies in the fact that the nature of the processes of structure formation of a cementless binder based on sandy fractions of the screening of fragments of destroyed buildings and structures, as a complex polyfunctional system, has been theoretically substantiated and experimentally confirmed. Different percentages of non-hydrated clinker minerals in concrete scrap were determined. In the smallest fraction (less than 0.16 mm), more than 20% of alite and belite are present. Waste of the old cement paste is more susceptible to crushing compared to the large aggregate embedded in it, therefore, particles of the old cement paste and fine aggregate predominate in the finer fractions of the waste. Comprehensive microstructural studies have been carried out on the possibility of using concrete scrap as a completely cementless binder using scanning electron microscopy, X-ray diffraction analysis, and differential thermal analysis. It has been established that for cementless samples prepared from the smallest fractions (less than 0.315 mm), the compressive strength is 1.5-2 times higher than for samples from larger fractions. This is due to the increased content of clinker minerals in their composition. The compressive strength of the cementless binder after 28 days (7.8 MPa), as well as the early compressive strength at the age of 1 day after steaming (5.9 MPa), make it possible to effectively use these materials for enclosing building structures.

11.
Materials (Basel) ; 15(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955212

RESUMO

Construction and demolition activities consume large amounts of natural resources, generating 4.5 bi tons of solid waste/year, called construction and demolition waste (C&DW) and other wastes, such as ceramic, polyethylene terephthalate (PET), glass, and slag. Furthermore, around 32 bi tons of natural aggregate (NA) are extracted annually. In this scenario, replacing NA with recycled aggregate (RA) from C&DW and other wastes can mitigate environmental problems. We review the use of RA for concrete production and draw the main challenges and outlook. RA reduces concrete's fresh and hardened performance compared to NA, but these reductions are often negligible when the replacement levels are kept up to 30%. Furthermore, we point out efficient strategies to mitigate these performance reductions. Efforts must be spent on improving the efficiency of RA processing and the international standardization of RA.

12.
Materials (Basel) ; 15(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35888471

RESUMO

In the search for better constructive efficiency and a reduction of the waste of construction materials, several researches have been performed in the last years around the world. Red ceramic blocks are artifacts widely used in civil construction around the world, and they result in a great consumption of raw materials and energy. The great innovation of this research was the development of ceramic blocks through an innovative method of pressing and dosing materials, replacing the traditional stage of extrusion in the manufacture of ceramics. In such a sense, a new manufacturing technology for ceramic blocks was proposed through the pressing process, adapting the soil-cement brick press machine, thus attaining more even pieces with greater compliance to the dimensions and preset geometry. In this work, the physical and mechanical features of the pressed and burned blocks (PBB) are produced in a partnership with Arte Cerâmica Sardinha, a traditional ceramic industry in the region of Campos dos Goytacazes, RJ, Brazil. It was sought to set the quality parameters for the blocks, to set their mechanical compressive strength, deformation modules and the Poisson coefficient. The blocks were tested in use by means of three layers of prism and small wall samples, and it was checked the fragile-type failure of the PBB. Results indicate that the blocks can be employed in small-sized construction works, as the characteristic compressive strength to block measured was 3.62 N/mm2 for average water absorption of 20.84%.

13.
Materials (Basel) ; 15(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35888529

RESUMO

A promising method of obtaining mineral fiber fillers for dry building mixtures is the processing of waste that comes from the production of technogenic fibrous materials (TFM). The novelty of the work lies in the fact that, for the first time, basalt production wastes were studied not only as reinforcing components, but also as binder ones involved in concrete structure formation. The purpose of the article is to study the physical and mechanical properties of waste technogenic fibrous materials as additives for optimizing the composition of raw concrete mixes. To assess the possibility of using wastes from the complex processing of TFM that were ground for 5 and 10 min as an active mineral additive to concrete, their chemical, mineralogical, and granulometric compositions, as well as the microstructure and physical and mechanical characteristics of the created concretes, were studied. It is established that the grinding of TFM for 10 min leads to the grinding of not only fibers, but also pellets, the fragments of which are noticeable in the total mass of the substance. The presence of quartz in the amorphous phase of TFM makes it possible to synthesize low-basic calcium silicate hydrates in a targeted manner. At 90 days age, at 10-20% of the content of TFM, the strength indicators increase (above 40 MPa), and at 30% of the additive content, they approach the values of the control composition without additives (above 35 MPa). For all ages, the ratio of flexural and compressive strengths is at the level of 0.2, which characterizes a high reinforcing effect. Analysis of the results suggests the possibility of using waste milled for 10 min as an active mineral additive, as well as to give better formability to the mixture and its micro-reinforcement to obtain fiber-reinforced concrete.

14.
Polymers (Basel) ; 14(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808631

RESUMO

The development of ultra-high-performance concrete (UHPC) is still practically limited due to the scarcity of robust mixture designs and sustainable sources of local constituent materials. This study investigates the engineering characteristics of Styrene Butadiene Rubber (SBR) polymeric fiber-reinforced UHPC with partial substitution of cement at 0, 5 and 20 wt.% with latex polymer under steam and air curing techniques. The compressive and tensile strengths along with capillary water absorption and sulfate resistance were measured to evaluate the mechanical and durability properties. Scanning Electron Microscopy (SEM) was carried out to explore the microstructure development and hydration products in the designed mixtures under different curing regimes. The results indicated that the mixtures incorporating 20 wt.% SBR polymer achieved superior compressive strength at later ages. Additionally, the tensile strength of the polymeric UHPC without steel fibers and with 20% polymers was enhanced by 50%, which promotes the development of novel UHPC mixtures in which steel fibers could be partially replaced by polymer, while enhancing the tensile properties.

15.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683909

RESUMO

Sumatran elephants (Elephas maximus sumatranus) are the world's largest living land mammals. The elephant's digestive system can only absorb 40% of the nutrients in digested feed, and the remainder is excreted as dung. Elephant dung waste can be used as a particleboard material due to its high fiber content. The objectives of this study are: (i) to prepare elephant dung waste as raw material for particleboard, (ii) to improve elephant dung particleboard's physical and mechanical properties using wood shavings, and (iii) to study the influence of several parameters on the physical and mechanical properties of particleboard. The particleboard dimensions and density were set at 20 cm × 20 cm × 1 cm and 0.8 g/cm3, respectively. The mixture ratio of elephant dung and wood shavings was 100/0, 90/10, 80/20, 70/30, 60/40, and 50/50 (% w/w). This mixture ratio of particles was sprayed with 7% isocyanate adhesive. The pressing at a pressure of 30 kg/cm2 for 5 min and 160 °C was used in this study. The physical and mechanical properties of particleboard were tested according to JIS A 5908 (2003) standard. The result shows that the addition of wood shaving improved the elephant dung particleboard's physical and mechanical properties. Except for moisture content and water absorption, the addition of wood shavings has a significant effect on elephant dung particleboard's physical and mechanical properties. The best ratio of elephant dung and wood-shaving for this research is 50/50 and has fulfilled the JIS A 5908-2003 standard, except for thickness swelling.

16.
Environ Sci Pollut Res Int ; 29(44): 66085-66099, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35488991

RESUMO

In recent years, the demand for clean water has been growing all over the world despite the different threats posed, including increasing pollution, increasing deforestation and climate change. Industrial activity is the second largest consumer of water, so highly industrialized regions are more susceptible to water stress. In this sense, reuse strategies have been progressively discussed and used around the world; however, in Brazil there is still place for many advances, whether due to lack of incentives, cultural issues in society, or poor regulation of the subject. The objective of this work was to carry out a diagnosis of raw water uptake by industries in one Hydrographic Region of the state of Rio de Janeiro and to propose a discussion on the adoption of water reuse practices for non-potable purposes from the use of treated effluents. A survey of the theoretical framework on the subject was carried out, as well as an analysis of sustainability indicators and reports of the companies, including the current licensing processes of large undertakings consuming water resources. With this study, it was possible to obtain the average cost of implementing a water reuse unit for an industry in the state of Rio de Janeiro-Brazil, which, despite still being expensive, has a strong tendency to use due to world water shortages. Finally, it was concluded that the state of Rio de Janeiro has a threat of water scarcity that could be aggravated in the coming years, if measures and investments in supply alternatives are not adopted (water reuse), and improvement in all stages of water management water resources.


Assuntos
Rios , Recursos Hídricos , Brasil , Indústrias , Abastecimento de Água
17.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335504

RESUMO

Fibres have long been utilized in the construction sector to improve the mechanical qualities of structural elements such as beams, columns, and slabs. This study aims to review the torsional behaviour of various forms of fibre reinforced concrete to identify possible enhancements and the practicability of concrete structural beams. Concrete reinforced steel fibre, synthetic fibre, and hybrid fibre are examples of fibre reinforced concrete. The review found that the mixing, orientation, and volume of fibres, the size of coarse particles, the aspect ratio of fibres, and the stiffness of fibres all affect the torsional strength of fibre reinforced concrete. Nevertheless, the application of fibres to recycled self-consolidating concrete of various forms needs to be explored and studied to ascertain its feasibility to facilitate greener concrete. Thus, with the results compiled in this review paper, it was possible to delimit advances and gaps on the effect of editing reinforcement fibres in relation to the torsion of structural elements.

18.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160400

RESUMO

This study aims to produce mortar through the addition of oil palm shells (OPS)-activated charcoal and oil palm empty fruit bunch (OPEFB) hydrochar, which has high mechanical properties, self-healing crack capabilities, and pollutant adsorption abilities. The cracking of mortar and other cementitious materials is essential in anticipating and reducing building damages and ages due to various reasons, such as chemical reactions, foundation movements, climatic changes, and environmental stresses. This leads to the creation of self-healing mortar, which is produced by adding reductive crack size materials to form calcium carbonate (CaCO3) and silicate hydrate (3CaO.2SiO2.2H2O, CSH). One of these materials is known as activated charcoal, which is obtained from oil palm shells (OPS) and oil palm empty fruit bunches (OPEFB) fibres. This is because the OPS-activated charcoal minimizes crack sizes and functions as a gaseous pollutant absorber. In this study, activated charcoal was used as fine aggregate to substitute a part of the utilized sand. This indicated that the utilized content varied between 1-3 wt.% cement. Also, the mortar samples were tested after 28 days of cure, including the mechanical properties and gaseous pollutant adsorption abilities. Based on this study, the crack recovery test was also performed at specific forces and wet/dry cycles, respectively, indicating that the mortar with the addition of 3% activated charcoal showed the best characteristics. Using 3% of the cement weight, OPEFB hydrochar subsequently varied at 1, 2, and 3% of the mortar volume, respectively. Therefore, the mortar with 3 and 1% of OPS-activated charcoal and OPEFB hydrochar had the best properties, based on mechanical, self-healing, and pollutant adsorption abilities.

19.
Polymers (Basel) ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35160636

RESUMO

The engineering application of natural lignocellulosic fibers (NLFs) has been intensifying all over the world due to their low cost and abundance, as well as their being eco-friendly and presenting favorable technological properties in polymeric and cementitious composites. Brazil, especially the Amazon region, owing to its climate and geographic position, has an abundant variety of NLFs that are still unexplored with great potential for use in various composite materials and applications such as civil construction, automobile parts and armor. Therefore, this review aims to establish a parallel between the technological properties of cementitious composites reinforced with Amazon NLFs, both in fresh and hardened states, and to analyze, compare results and contribute to a better understanding of the similarities and differences between the types of reinforcements. A relevant contribution of this review is the possibility of improving knowledge about Amazon NLFs, showing their potential for application in eco-friendly materials, in addition to contributing to studies with new NLFs not yet applied in composite. For this, it was necessary to carry out a literature survey on the physical, chemical and mechanical properties of cementitious composites reinforced with NLFs, in addition to analyzing case studies involving fibers such as curaua, açai, bamboo, jute and sisal. It can be concluded that the physical and chemical characteristics of the Amazon NLFs directly influence the technological properties of cementitious compounds, such as mechanical strength and water absorption. However, there might be a need for surface treatment aimed at improving adhesion and durability of the cementitious composite. Finally, some suggestions for future research work are highlighted in order to show the need to continue investigations on the application of Amazon NLFs in cementitious composites.

20.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057120

RESUMO

The ornamental stone industry generates large amounts of waste thus creating environmental and human health hazards. Thus, pastes with 0-30 wt.% ornamental stone waste (OSW) incorporated into ordinary Portland cement (OPC) were produced and their rheological properties, hydration kinetics, and mechanical properties were evaluated. The CO2 equivalent emissions related to the pastes production were estimated for each composition. The results showed that the paste with 10 wt.% of OSW exhibited similar yield stress compared to the plain OPC paste, while pastes with 20 and 30 wt.% displayed reduced yield stresses up to 15%. OSW slightly enhanced the hydration kinetics compared to plain OPC, increasing the main heat flow peak and 90-h cumulative heat values. The incorporation of OSW reduced the 1-, 3-, and 28-days compressive strength of the pastes. Water absorption results agreed with the 28 days compressive strength results, indicating that OSW increased the volume of permeable voids. Finally, OSW incorporation progressively reduced the CO2 emission per m3 of OPC paste, reaching a 31% reduction for the highest 30 wt.% OSW content. Overall, incorporating up to 10 wt.% with OSW led to pastes with comparable fresh and hardened properties as comported to plain OPC paste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...